Skip to main content

Quantum Simulation of Spin-Boson Models with Structure Bath

Virtual

Abstract The spin-boson model, involving spins interacting with a bath of quantum harmonic oscillators, is a widely used representation of open quantum systems that describe many dissipative processes in physical, chemical and biological systems. Trapped ions present an ideal platform for simulating the quantum dynamics of such models, by accessing both the high-quality internal qubit…

Progress and Challenges in Quantum Algorithms for Quantum Chemistry: Hard Lessons from the Field

Virtual

Abstract One of the standard arguments forĀ building a quantum computer is that we might profitably use the entanglements between qubits to simulate the correlations between electrons and thus solve a myriad of important chemical and material design problems. While this is surely an elegant and effective one-line funding justification, the devil is very much in…

How to Make an Ion Trap

Virtual

Abstract Among the principal challenge facing scalability in ion trap quantum computers is the full integration of optics, digital electronics, and through-wafer vias into the trap chip. I will discuss Oxford Ionics' strategy for developing ion trap quantum computers with 100s-1000s of ions, then describe some of the methodologies for designing large-scale ion trap electrode…